Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability.

نویسندگان

  • M Tehei
  • D Madern
  • C Pfister
  • G Zaccai
چکیده

Protein thermal dynamics was evaluated by neutron scattering for halophilic malate dehydrogenase from Haloarcula marismortui (HmMalDH) and BSA under different solvent conditions. As a measure of thermal stability in each case, loss of secondary structure temperatures were determined by CD. HmMalDH requires molar salt and has different stability behavior in H(2)O, D(2)O, and in NaCl and KCl solvents. BSA remains soluble in molar NaCl. The neutron experiments provided values of mean-squared atomic fluctuations at the 0.1 ns time scale. Effective force constants, characterizing the mean resilience of the protein structure, were calculated from the variation of the mean-squared fluctuation with temperature. For HmMalDH, resilience increased progressively with increasing stability, from molar NaCl in H(2)O, via molar KCl in D(2)O, to molar NaCl in D(2)O. Surprisingly, however, the opposite was observed for BSA; its resilience is higher in H(2)O where it is less stable than in D(2)O. These results confirmed the complexity of dynamics-stability relationships in different proteins. Softer dynamics for BSA in D(2)O showed that the higher thermostability is associated with entropic fluctuations. In the halophilic protein, higher stability is associated with increased resilience showing the dominance of enthalpic terms arising from bonded interactions. From previous data, it is suggested that these are associated with hydrated ion binding stabilizing the protein in the high-salt solvent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation to extreme environments: macromolecular dynamics in complex systems.

What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. Extremophiles and their macromolecules had to develop molecular mechanisms of adaptation to extreme physico-chemical conditions. Using neutron spectroscopy, we have demonstrated that molecular dynamics represents one of these molecular mechanisms of...

متن کامل

Adaptation to high temperatures through macromolecular dynamics by neutron scattering.

Work on the relationship between hyperthermophile protein dynamics, stability and activity is reviewed. Neutron spectroscopy has been applied to measure and compare the macromolecular dynamics of various hyperthermophilic and mesophilic proteins, under different conditions. First, molecular dynamics have been analyzed for the hyperthermophile malate dehydrogenase from Methanococcus jannaschii a...

متن کامل

THE EFFECT OF SALT STRESS ON MALATE DEHYDROGENASE IN WHEAT

Effect of various NaCI treatments (0, 50, 100, 200 and 300 mM) at different growth and development stages (tillering, boot swollen, flowering and anthesis) of two wheat cultivars  on the kinetic activity and PAGE electrophoretic pattern of leaf malate dehydrogenase was studied under greenhouse conditions. Ghods was salt-sensitive and Boolani was salt-tolerant. In general, in response to salinti...

متن کامل

An experimental point of view on hydration/solvation in halophilic proteins

Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhib...

متن کامل

Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 25  شماره 

صفحات  -

تاریخ انتشار 2001